STEP - BY - STEP EXPLANATION
What to find?
• Marginal cost as a function of q.
,
• Revenue function in terms of q.
,
• Marginal revenue function in terms of q.
Given:
![\begin{gathered} p=105-(q)/(90) \\ \\ C\left(q\right)=22000+90q, \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yq9544x5sqxjekvjgeltadpissnjyj0ay8.png)
Part A
Marginal cost as a function of q:
![C^(\prime)(q)=(d)/(dq)(22000+90q)](https://img.qammunity.org/2023/formulas/mathematics/college/jerq8y17tjdhgid5cw4h8qe5i080g1vxq5.png)
![\begin{gathered} =0+90 \\ \\ =90 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cd4qxikazilslqhn1e8npe268htbqps9yf.png)
Part B
Revenue function in terms of q.
Revenue = pq
![=(105-(q)/(90))q](https://img.qammunity.org/2023/formulas/mathematics/college/97sslj4k8lgtntevs94ayhq5ffsjdwrfm3.png)
![=105q-(q^2)/(90)](https://img.qammunity.org/2023/formulas/mathematics/college/itcmy32kke2gopbgo0107o7xhtsgvyj1x9.png)
Hence;
![R(q)=105q-(q^2)/(90)](https://img.qammunity.org/2023/formulas/mathematics/college/ing5qsuqir8rl9cn96c0zxmazhgpspjiuf.png)
Part C
Marginal revenue function in terms of q.
![R^(\prime)(q)=(d)/(dq)(105q-(q^2)/(90))](https://img.qammunity.org/2023/formulas/mathematics/college/wcuuehk5e3vdqlpklkiy9yiqogiom1af8x.png)
![=105-(2q)/(90)](https://img.qammunity.org/2023/formulas/mathematics/college/qqnke6qlpqa3omtseym7l7rz8h8twvqotw.png)
![=105-(q)/(45)](https://img.qammunity.org/2023/formulas/mathematics/college/baqoni227vi5et8fbp4yw9un6xvody8ab0.png)
Hence;
![R^(\prime)(q)=105-(q)/(45)](https://img.qammunity.org/2023/formulas/mathematics/college/2qk1a2cnrj91a98ijga8oj16lfjq39veei.png)
ANSWER
A) C'(q) =90
B) R(q) = 105q - q^2/90
C) R'(q) = 105 - q/45