Hello there. To solve this question, we'll have to remember some properties about logarithms.
Given the logarithmic equation:
![2=\log _ae](https://img.qammunity.org/2023/formulas/mathematics/college/gf19tj4d053oju258h9jupqna0wxn2eh52.png)
We have to determine the base a.
For this, remember that the logarithmic function is defined as
![\log _ab](https://img.qammunity.org/2023/formulas/mathematics/college/tajrxlldjpcgdskc0g5signxogqsqgkbgf.png)
For values of a, b such that
![\begin{gathered} 00 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wt60uk8t0i7qh8hspeszxzf4nk02tyuenz.png)
Also, we need the following property:
![\log _ab=c\leftrightarrows b=a^c](https://img.qammunity.org/2023/formulas/mathematics/college/e5u1yhdvu8t4bv9n3xagqlgsrvqodazk63.png)
Such that we have:
![\begin{gathered} 2=\log _ae \\ \Rightarrow e=a^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/efttpd9yi58t06bf8dfzffjf40heb9cq3c.png)
Take the square root on both sides of the equation
![\begin{gathered} \sqrt[]{e}=\sqrt[]{a^2} \\ |a|=\sqrt[]{e} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p7ov7z3oej4c6040x8psqoyulyepojjz4k.png)
This gives us two solutions, according to the definition of the absolute value function:
![|x|=\begin{cases}x,\text{ if x is greater than or equal to zero} \\ -x,\text{ if x is less than zero}\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/jqsnnb57gmw2di6t0qvu1w0bcjnsl8ujiq.png)
In this case, remember that a > 0, so the only solution we're interested is:
![a=\sqrt[]{e}](https://img.qammunity.org/2023/formulas/mathematics/college/en2umtfcp8p3lvyjokl2zyrdim7og0n6oz.png)
In this case, we've showed that:
![\log _{\sqrt[]{e}}e=2](https://img.qammunity.org/2023/formulas/mathematics/college/n98qise4uo64kw7rr40dipazepvfyoizjm.png)
In fact, all the other properties hold and this is the solution for the base a in this logarithmic equation.