We will make use of the Trigonometry ratio to solve this question.
From the figure provided;
Hypotenuse side = 6
Opposite side = y
Adjacent side = x
Given angle = 60 degrees
To find side x, the suitable Trigonometry ratio to be used is the Cosine.
Thus, we have;
![\begin{gathered} \text{Cos}\theta=\frac{\text{Adjacent}}{\text{Hypotenuse}} \\ \text{Cos}60=(x)/(6) \\ \text{cross}-\text{multiply} \\ x=6*\cos 60 \\ x=6*0.5 \\ x=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ndj8w2bqhllk75uak26dqidw88sgxes5bn.png)
To find side y, the suitable Trigonometry ratio to be used is the Sine.
Thus, we have;
![\begin{gathered} Sin\theta=\frac{\text{Opposite}}{\text{Hypotenuse}} \\ \text{Sin}60=(y)/(6) \\ cross-multiply \\ y=6*\sin 60 \\ y=6*\frac{\sqrt[]{3}}{2} \\ y=3\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zzum5uefawo6qk114ln9fngyee3qawqxhc.png)
Hence, the values of x and y are:
![x=3;y=3\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/oigu2b4ymyhe9moy7btex5b7fkt8naklso.png)