In order to calculate when the population will be 100, first let's calculate the coefficients A0 and k.
Since the initial population is 1500, we have A0 = 1500.
Then, to calculate the coefficient k, let's use the value of t = 9 and A = 1000, so we have:
![\begin{gathered} 1000=1500\cdot e^(k\cdot9) \\ e^(9k)=(1000)/(1500)=(2)/(3) \\ \ln (e^(9k))=\ln ((2)/(3)) \\ 9k\cdot\ln (e)=-0.405465 \\ 9k=-0.405465 \\ k=-0.045 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/k5fgj157aonna66ecdt7qxvn7yjtkts076.png)
Now, let's calculate the value of t for A = 100:
![\begin{gathered} 100=1500\cdot e^(-0.045\cdot t) \\ e^(-0.045t)=(100)/(1500)=(1)/(15) \\ \ln (e^(-0.045t))=\ln ((1)/(15)) \\ -0.045t\cdot\ln (e)=-2.70805 \\ -0.045t=-2.70805 \\ t=(-2.70805)/(-0.045)=60.18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yhedz4gtii303l3rjz561sfwy3p2sn47dh.png)
Rounding to the nearest whole year, we have a time of 60 years.