Answer:
The approximate area of the smaller circle is;
![28.26\text{ }in^2](https://img.qammunity.org/2023/formulas/mathematics/college/w84clkulroewdaw0olqklot61chby6mpr3.png)
Step-by-step explanation:
Given that the radius of a smaller circle is half the length of the radius of a larger circle.
Let R and r represent the radius of the larger and smaller circle respectively;
![R=2r](https://img.qammunity.org/2023/formulas/mathematics/college/kw56x2tgll5ju8cuyvampedguoxyrqvlvf.png)
The area of the smaller circle will be;
![A_s=\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/rbn9vujm87wschdegqdxbghgirqkulkwul.png)
while the area of the larger circle will be;
![A_l=\pi R^2](https://img.qammunity.org/2023/formulas/mathematics/college/wwjbi4zwuyizeebm5iwknnpdxaunzqjxzf.png)
substituting R = 2r;
![\begin{gathered} A_l=\pi R^2 \\ A_l=\pi(2r)^2 \\ A_l=\pi(2^2r^2) \\ A_l=4\pi r^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4othagdgalbyvcp0josy097osx3ywgo8pd.png)
We can now replace the area of the smaller circle;
![\begin{gathered} A_l=4\pi r^2 \\ \text{And we know that;} \\ A_s=\pi r^2 \\ so; \\ A_l=4A_s \\ \therefore \\ A_s=(A_l)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y6kn1535q5rv0trfkhws2m99c3ngxntr0e.png)
Given in the question;
The area of the larger circle is 113.04 square inches.
![A_l=113.04\text{ }in^2](https://img.qammunity.org/2023/formulas/mathematics/college/a2xb5xka9dzxigd4f8ohpukv4fo9c7o86v.png)
Substituting the area of the larger circle;
![\begin{gathered} A_s=(A_l)/(4) \\ A_s=(113.04)/(4) \\ A_s=28.26\text{ }in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o2npz6772b6aeivcnbkith84uljx3jz4gs.png)
Therefore, the approximate area of the smaller circle is;
![28.26\text{ }in^2](https://img.qammunity.org/2023/formulas/mathematics/college/w84clkulroewdaw0olqklot61chby6mpr3.png)