Solution
We are given the function
![f(x)=4x^2-7x-15](https://img.qammunity.org/2023/formulas/mathematics/college/wq4a8bl3fl9f3jqij4bfib0zio9twmiapl.png)
To find the x - intercept, we will put f(x) = 0
![\begin{gathered} 4x^2-7x-15=0 \\ \\ using\text{ formula method} \\ \\ a=4 \\ b=-7 \\ c=-15 \\ \\ x=(-b\pm√(b^2-4ac))/(2a) \\ \\ x=(7\pm√(49-4(4)(-15)))/(2(4)) \\ \\ x=(7\pm√(289))/(8) \\ \\ x=(7\pm17)/(8) \\ \\ x=(24)/(8),(-10)/(8) \\ \\ x=3,-(5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xjj2286jczxf050ywy0zisfbrbujqgrvjf.png)
The x - intercept are
![\begin{gathered} x=3 \\ and \\ x=-(5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l9q7ysensixp7i50ebpavbak8qdbxeci9t.png)
f(x) vertex is a minimum
![\begin{gathered} f(x)=4x^(2)-7x-15 \\ \\ f(x)=4(x^2-(7)/(4)x)-15 \\ \\ f(x)=4(x-(7)/(8))^2-4((7)/(8))^2-15 \\ \\ f(x)=4(x-(7)/(8))^2-4((49)/(64))-15 \\ \\ f(x)=4(x-(7)/(8))^2-(289)/(16) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/npn82euwq4wzm7i2qw9oanqv499ckf9s7f.png)
The coordinate of the vertex is
![((7)/(8),-(289)/(16))](https://img.qammunity.org/2023/formulas/mathematics/college/rf2xxajmexkr5xx1qaacp9hz1714f8zwoz.png)
The graph of the function is
Basically, we use the vertex point, intercept on the x - axis and y - axis