We have the expression for the height H of the rock in function of the time r, when it falls from a height of 20 meters:
![H(r)=20-4.9\cdot r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/r646htcajgq9f3s6nbjfhsjjlfaulrg7vl.png)
When r = 1 second, we have:
![H(1)=20-4.9(1)^2=20-4.9\cdot1=20-4.9=15.1](https://img.qammunity.org/2023/formulas/mathematics/high-school/t2fdexem3ekjit13far7941uuaazysshc1.png)
When r = 1.1 seconds, we have:
![H(1.1)=20-4.9(1.1)^2=20-4.9\cdot1.21=20-5.929=14.071\approx14](https://img.qammunity.org/2023/formulas/mathematics/high-school/dawdih7snk22y3k4ny7x57v2gbsybzidbd.png)
When r = 1.2 seconds, we have:
![H(1.2)=20-4.9(1.2)^2=20-4.9\cdot1.44=20-7.056=12.944\approx13](https://img.qammunity.org/2023/formulas/mathematics/high-school/atzfbgdf7foag2f8ae7fzrt3w8mgwn0hgc.png)
To know the time for each height, we have to work with the equation like this:
![\begin{gathered} H=20-4.9r^2 \\ 4.9r^2=20-H \\ r^2=(20-H)/(4.9) \\ r=\sqrt{(20-H)/(4.9)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nnu8xyjzo57hb5tv7iuti66l3qok8nkz76.png)
Then, we can calculate at which time the height is 15 meters:
![r=\sqrt{(20-15)/(4.9)=\sqrt{(5)/(4.9)}}=√(1.02)\approx1.01](https://img.qammunity.org/2023/formulas/mathematics/high-school/ahzmm7q9g1lxglv4aaa18iatm38vaqyuah.png)
When the height is 10 meters, r is:
![r=\sqrt{(20-10)/(4.9)=\sqrt{(10)/(4.9)=}}√(2.04)\approx1.43](https://img.qammunity.org/2023/formulas/mathematics/high-school/tdvyvlqel1asspbweqqv7890aaml5dn26u.png)
When the height is 5 meters, r is:
![r=\sqrt{(20-5)/(4.9)=\sqrt{(15)/(4.9)=}}√(3.06)\approx1.75](https://img.qammunity.org/2023/formulas/mathematics/high-school/jpckynkqro8o37kw74xlkij5zgm9cq06v9.png)
The rock hits the ground when H=0. This happens when r is:
![r=\sqrt{(20-0)/(4.9)=\sqrt{(20)/(4.9)=}}√(4.08)\approx2.02](https://img.qammunity.org/2023/formulas/mathematics/high-school/qsuywnqd98ra3qxxy2cd2o776tfvw4xuv0.png)