We have the following complex number:
![11i^7-2i^5+5i-11](https://img.qammunity.org/2023/formulas/mathematics/high-school/8hjp2s6el968zq84q49tulf9vw5hse1pal.png)
Let's begin by noting how the powers of i work. To begin with, let's remember that
![i=\sqrt[]{-1}\text{.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vlyux1x6tfbgzxkpruehyi1e6sq68x3u68.png)
Knowing that:
![i^1=i,](https://img.qammunity.org/2023/formulas/mathematics/high-school/clgi6x0mqg2tyhv6zt7ot0q9cr4ipm5s2p.png)
![i^2=(\sqrt[]{-1})^2=-1,](https://img.qammunity.org/2023/formulas/mathematics/high-school/sglot3g2ors6xxjd64zmksmhr2be91goej.png)
![i^3=i^2\cdot i=-1\cdot i=-i,](https://img.qammunity.org/2023/formulas/mathematics/high-school/w543pu9irj2xhvaemamjlx6yowo5mx8u6n.png)
![i^4=i^2\cdot i^2=(-1)(-1)=1.](https://img.qammunity.org/2023/formulas/mathematics/high-school/tutyvmdmxdwyij6pzid50djwav5qlmla3s.png)
Now, notice that
![i^5=i^4\cdot i=1\cdot i=i,](https://img.qammunity.org/2023/formulas/mathematics/high-school/9utezj41f47ncz2r8gz0cbph4cfgxoz6hd.png)
so the powers of i actually repeat after four integers. In other words:
![i^1=i^5=i^9=i^(13)=\ldots](https://img.qammunity.org/2023/formulas/mathematics/high-school/7vriq58o569vbddq8bi07sbry557yb3r5v.png)
![i^2=i^6=i^(10)=i^(14)=\ldots](https://img.qammunity.org/2023/formulas/mathematics/high-school/p1og3zlt8pjg87qy6yo132xrinlnonlzpi.png)
![i^3=i^7=i^(11)=i^(15)=\ldots](https://img.qammunity.org/2023/formulas/mathematics/high-school/jbd8ak2jo57bbfapw1azkpproh13nldpmj.png)
![i^4=i^8=i^(12)=i^(16)=\ldots](https://img.qammunity.org/2023/formulas/mathematics/high-school/1cemr1vir5qqq493fdhkoo88xf8t7gwfkf.png)
This also works the same way for negative powers. Now that we know this, let's focus on the powers of i on the number we were given:
![i^7=i^3=-i,](https://img.qammunity.org/2023/formulas/mathematics/high-school/kjrehqm1ll6qr2jut9rbf0aj8iho3u39u2.png)
so
![11i^7=-11i\text{.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qn2zdokl2da00x4vk5p22lgdeii59is7rc.png)
![i^5=i,](https://img.qammunity.org/2023/formulas/mathematics/high-school/cfsa8yozclt4cv2aoy06ssy8c70vd06pc9.png)
so
![-2i^5=-2i\text{.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pd3r8l3hyl1yhl6i10zyv4cc2v1tol8n3u.png)
Putting all of them together:
![11i^7-2i^5+5i-11=-11i-2i+5i-11=-8i-11=-11-8i\text{.}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ntlgeq4p11gg64k8puur3lxvmqahaus1dp.png)
So, the correct answer is option c.