178k views
0 votes
Help me solve this problem! Thank you! Only answer if you understand

Help me solve this problem! Thank you! Only answer if you understand-example-1

1 Answer

5 votes

Composite transformation:


(D_2\circ T_(<-5,-3>))

1. Translation 5 units to the left and 3 units down:


(x,y)\rightarrow(x-5,y-3)

Apply the rule above to vertices of given triangle:


\begin{gathered} M(3,5)\rightarrow M^(\prime)(3-5,5-3) \\ M^(\prime)(-2,2) \\ \\ \\ N(-1,4)\rightarrow N^(\prime)(-1-5,4-3) \\ N^(\prime)(-6,1) \\ \\ \\ O(1,8)\rightarrow O^(\prime)(1-5,8-3) \\ O^(\prime)(-4,5) \end{gathered}

2. Dilation with factor 2:


(x,y)\rightarrow(2x,2y)

Apply the rule above to vertices M'N'O':


\begin{gathered} M^(\prime)(-2,2)\rightarrow M^(\prime)^(\prime)(2*-2,2*2) \\ M^(\prime)^(\prime)(-4,4) \\ \\ N^(\prime)(-6,1)\rightarrow N^(\prime)^(\prime)(2*-6,2*1) \\ N^(\prime)^(\prime)(-12,2) \\ \\ O^(\prime)(-4,5)\rightarrow O^(\prime)^(\prime)(2*-4,2*5) \\ O^(\prime)^(\prime)(-8,10) \end{gathered}

Then, the vertices of image after the composite transformation are:

M''(-4,4)

N''(-12,2)

O''(-8,10)

Graph:

Help me solve this problem! Thank you! Only answer if you understand-example-1
User Rstackhouse
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories