Composite transformation:
![(D_2\circ T_(<-5,-3>))](https://img.qammunity.org/2023/formulas/mathematics/college/5jys4pgbi4uj7572mv7f8ddtmzcpz9vly1.png)
1. Translation 5 units to the left and 3 units down:
![(x,y)\rightarrow(x-5,y-3)](https://img.qammunity.org/2023/formulas/mathematics/college/jaj0owz8enow44mu2nhlbx7yvtpotj3ftv.png)
Apply the rule above to vertices of given triangle:
![\begin{gathered} M(3,5)\rightarrow M^(\prime)(3-5,5-3) \\ M^(\prime)(-2,2) \\ \\ \\ N(-1,4)\rightarrow N^(\prime)(-1-5,4-3) \\ N^(\prime)(-6,1) \\ \\ \\ O(1,8)\rightarrow O^(\prime)(1-5,8-3) \\ O^(\prime)(-4,5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g5ylse5ptxfwruqemr07elb25n6c4po5ye.png)
2. Dilation with factor 2:
![(x,y)\rightarrow(2x,2y)](https://img.qammunity.org/2023/formulas/mathematics/college/4wpq3bpsk5dy2roxebbz1zcoky1ujar1r1.png)
Apply the rule above to vertices M'N'O':
![\begin{gathered} M^(\prime)(-2,2)\rightarrow M^(\prime)^(\prime)(2*-2,2*2) \\ M^(\prime)^(\prime)(-4,4) \\ \\ N^(\prime)(-6,1)\rightarrow N^(\prime)^(\prime)(2*-6,2*1) \\ N^(\prime)^(\prime)(-12,2) \\ \\ O^(\prime)(-4,5)\rightarrow O^(\prime)^(\prime)(2*-4,2*5) \\ O^(\prime)^(\prime)(-8,10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nkdbgzrj95wt7914m7jxig296lm8gyooh6.png)
Then, the vertices of image after the composite transformation are:
M''(-4,4)
N''(-12,2)
O''(-8,10)
Graph: