SOLUTION
The given expression is
![4x^2+8x-5](https://img.qammunity.org/2023/formulas/mathematics/college/rs12z56qrouncla4vasaq6jccthmsxjmyf.png)
The general trinomial expression is,
![ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/knmog89o03f8dx9fluvbqb64q9rt61y6kp.png)
Therefore,
![\begin{gathered} a* c=4*-5=-20 \\ b=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dmr3c1a6zkfb8hadh5495m74va9fuy1ro5.png)
Let us look for the factors of -20 and also confirm if the factors will give 8 as the sum.
![\begin{gathered} -2*10=-20 \\ -2+10=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g8kfkxpasudqux9ym5xyg58hkoo2sq0fzw.png)
Therefore, the two factors are -2 and 10.
Let us now replace 8x with -2x and 10x in the expression given
![4x^2-2x+10x-5](https://img.qammunity.org/2023/formulas/mathematics/college/1k95ich7aemr2t6yfhdohok6mogj5tpdon.png)
Break the expression into two groups
![\mleft(4x^2-2x\mright)+\mleft(10x-5\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/3awqne6vh7ffxifo2oj128j9roowdgpt2a.png)
Factor out the common terms
![2x(2x-1)+5(2x-1)](https://img.qammunity.org/2023/formulas/mathematics/college/ea0pv2reapm0zyok1hmcwm5jugyngd4hfl.png)
Factor out the common term 2x - 1
![\mleft(2x-1\mright)\mleft(2x+5\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/3e3bej1u590uk2lrsaxakgxlu4jiakd2r2.png)
Hence, the answer is
![\mleft(2x-1\mright)\mleft(2x+5\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/3e3bej1u590uk2lrsaxakgxlu4jiakd2r2.png)