Given the expression:
sin(135° - 60°)
Let's find the exact value of the expression.
First simplify the expression in the parentheses:
sin(135° - 60°) = sin(75°)
The exact value of sin(75°) is:
![sin(75^o)=(√(2)+√(6))/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/iawebqnoh5tg1pwr8oj7d0doomzd7mplkn.png)
Part B.
Given the expression:
sin135° - cos60°
Let's find the exact value.
Apply the reference by finding the equivalent angle in the first quadrant.
![\begin{gathered} 135-90=45^o \\ \\ \text{ Thus, we have:} \\ sin45-cos60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/71bh7q39y1gzh0rarwcv0q56uq6jjcwewo.png)
We have the following:
![\begin{gathered} Exact\text{ value of sin45=}(√(2))/(2) \\ \\ Exact\text{ value of cos60=}(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gapgcusb5gsr9jrbvw17jwtlu6j2bukgv4.png)
Therefore, the exact value of the expression is:
![(√(2))/(2)=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u4v1bpl93u02eubfuo5wwkrgectcsrmm27.png)
ANSWER:
• Part A.
![\begin{gathered} (√(2)+√(6))/(4) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u03dvmvpoejfzcu1oprzwm2hk90gpbi00o.png)
• Part B.
![(√(2))/(2)-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7fd056j88b58x4pdj9n7te1xrq4hb7oshw.png)