222k views
2 votes
Triangle ABC, with vertices A(2,-8), B(5,-9), and C(4,-6), is drawn on the coordinate grid below. y 2 1 X -2 -1 1 N 4 5.6 7 8 9 10 -1 -2 -3 -4

Triangle ABC, with vertices A(2,-8), B(5,-9), and C(4,-6), is drawn on the coordinate-example-1
User Foamroll
by
8.4k points

1 Answer

5 votes

First, we have to calculate the measures of the sides of the triangle.

Apply the distance formula:


d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}

Replace with the coordinate points given:

A= (2,-8)

B= (5,-9)

C= (4,-6)

Side AC


d=\sqrt[]{(4-2)^2+(-6-(-8))^2}=\sqrt[]{2^2+2^2}=\sqrt[]{8}

Side CB


d=\sqrt[]{(5-4)^2+(-9-(-6))^2}=\sqrt[]{1+9}=\sqrt[]{10}

Side AB


d=\sqrt[]{(5-2)^2+(-9-(-8))}=\sqrt[]{9-1}=\sqrt[]{10}

Apply Heron's formula:


A\text{ =}\sqrt[]{s(s-a)(s-b)(s-c)}


s=(a+b+c)/(2)

a, b, c are the distances ,CB , AC and AB


s=\frac{\sqrt[]{10}+\sqrt[]{10}+\sqrt[]{8}}{2}=\frac{2\sqrt[]{10}+\sqrt[]{8}}{2}=4.58
undefined

User Habizzle
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories