The coordinates of point P along the directed line segment AB with A(-4,8) and B(16,-2) implies that the point P divides the line AB internally
Recall that the formular for the coordinates of a point that divides a line internally is given as
![P\text{ = \lbrack}\frac{mx_2+nx_1}{m\text{ + n}}\text{ , }\frac{my_2+ny_1}{m\text{ + n}}\rbrack](https://img.qammunity.org/2023/formulas/mathematics/high-school/w4dsht6umdionk8axs2mena35i58vgphu3.png)
where m and n is the ratio of the internal division
Thus, we have
![\begin{gathered} P\text{ = \lbrack}\frac{3(16)\text{ + 2(-4) }}{3\text{ + 2}},\frac{3(-2)\text{ + 2(8)}}{3+\text{ 2}}\rbrack \\ P\text{ = \lbrack}\frac{48\text{ - 8}}{5}\text{ , }\frac{-6\text{ + 16}}{5}\rbrack \\ P\text{ = \lbrack}(40)/(5),\text{ }(10)/(5)\rbrack \\ P\text{ = \lbrack{}8, 2\rbrack} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rdffi830x2vc8urgs5ygws4dypmobc1mqk.png)