3.8k views
5 votes
Multiply out (x2 + 3xy - y)(3x + y) using polynomial long multiplication.A3x3 + 12x2y + xy2 - 3xy - y2B3x3 + 10x2y + 3xy2 - 3xy + y2C3x3 + 10x2y + 3xy2 - 3xy - y2D3x3 + 8x2y + 3xy2 - 3xy - y2

User Degill
by
4.4k points

1 Answer

7 votes

Answer:


C.)3x^3+10x^2y+3xy^2-3xy-y^2

Step-by-step explanation:

Given the multiplication expression:


(x^2+3xy-y)\mleft(3x+y\mright)

On expansion:


\begin{gathered} =x^2(3x)+x^2y+3xy(3x)+3xy(y)-3xy-y^2 \\ =3x^3+x^2y+9x^2y+3xy^2-3xy-y^2^{} \end{gathered}

Take the sum


=3x^3+10x^2y+3xy^2-3xy-y^2

This gives the required product.

User Farhad Bagherlo
by
4.8k points