Given: Square ASDF has diagonals ( line) AD and (line) SF
To Determine: The length of (line) SF if (line) AD=8x-5 and (line) SF= 4x+3
Solution:
The diagram below represents the given square
Given that
![\begin{gathered} AD=8x-5 \\ SF=4x+3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vpc7rl8ybbxeddh06hia99t9yb7wlyo0mb.png)
Please note that the diagonals of a square are equal. So, diagonal AD and diagonal SF are equal.
![\begin{gathered} AD=SF \\ 8x-5=4x+3 \\ 8x-4x=3+5 \\ 4x=8 \\ x=(8)/(4) \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ti135wd91jc0kxw6ab65cez8jzvitlfl7.png)
Therefore, line SF is
![\begin{gathered} SF=4x+3 \\ SF=4(2)+3 \\ SF=8+3 \\ SF=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d49595uixm4x7bednhgnuyakm8vej8loiz.png)
Hence, SF = 11