59.3k views
3 votes
Can u please help me solve. I am reviewing for a final

Can u please help me solve. I am reviewing for a final-example-1

1 Answer

5 votes

henSolution:

Given that;

An object is suspended by two cables attached at a single point.

The diagrammatic representation is shown below

For part A;

Writing the vector in component form


\begin{gathered} \vec{v_1}=110\sin50\degree(\vec{i})+110\cos50\degree(\vec{j}) \\ \vec{v_1}=70.7\vec{i}+84.3\vec{j} \\ \vec{v_2}=60\cos160\degree(\vec{i})+60\cos160\degree(\vec{j}) \\ \vec{v_2}=-56.4\vec{i}+20.5\vec{j} \end{gathered}

Hence, the answer is


\begin{gathered} v_1=70.7\vec{\imaginaryI}+84.3\vec{j} \\ v_2=-56.4\vec{\imaginaryI}+20.5\vec{j} \end{gathered}

For part B;

Finding the dot product of the vectors


\begin{gathered} \vec{v_1}\cdot\vec{v_2}=(70.7\vec{\mathrm{i}}+84.3\vec{j})\cdot(-56.4\vec{\mathrm{i}}+20.5\vec{j}) \\ \vec{v_1}\cdot\vec{v_2}=-3987.48+1728.15=-2259.33 \\ \vec{v_1}\cdot\vec{v_2}=-2259.33 \end{gathered}

Hence, the dot product is


\vec{v_1}\vec{\cdot v_2}=-2259.33

For part C

For the angles between vectors, using the dot product


\vec{v_1}\cdot\vec{v_2}=\lvert{\lvert\vec{{v_1}}\rvert}\rvert\lvert{\lvert\vec{{v_2}}\rvert}\rvert\cos\theta


\begin{gathered} (110\cdot60)\cos\theta=-2259.33 \\ \cos\theta=(-2259.33)/(6600) \\ \cos\theta=-0.34232 \\ \theta=\cos^(-1)(-0.34232) \\ \theta=110\degree\text{ \lparen nearest degree\rparen} \end{gathered}

Hence, the angle between them is 110° (nearest degree)

Can u please help me solve. I am reviewing for a final-example-1
User MG Lolenstine
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories