118k views
5 votes
X + y = 12x • y = -64

User Jackbijou
by
4.4k points

1 Answer

7 votes

We need to clear first in one equation any of the variables:

Lest take the first one:


x+y=12
x=12-y

We replace this value of x in the other equation:


(12-y)\cdot\text{ y = -64}
12y-y^2=\text{ -64}

then organizing we have


-y^2+12y+64=0

Using the quadratic equation we obtain:


y=\frac{-12\pm\sqrt[]{12^2-4(-1)(64)}}{2(-1)}
y=\frac{-12\pm\sqrt[]{144+256}}{-2}
y=\frac{-12\pm\sqrt[]{400}}{-2}
y=(-12\pm20)/(-2)

we have two possible solution, one with the addition and one with the subtration


y_1=(-12+20)/(-2)=(8)/(-2)=-4


y_2=(-12-20)/(-2)=(-32)/(-2)=-16

Using that values in the first equation when we clear the x:


x_1=12-y_1=\text{ 12 - (-4) =16}
x_2=12-y_2=\text{ 12 - (-16) =28}

So if we can see those values in the equation x • y = -64


x_1\cdot y_1=-64_{}
16\cdot(-4)=-64

If you try to do this multiply with x2 y y2 it will be a different number s

The answer is X= 16 y Y= - 4

X + y = 12x • y = -64-example-1
User Koningdavid
by
4.8k points