66.7k views
2 votes
Identify the vertices of the feasible region and use them to find the maximum and/or minimum value for the given linear programming constraints

Identify the vertices of the feasible region and use them to find the maximum and-example-1
User Dan Mork
by
5.9k points

1 Answer

5 votes

To solve this question, we are given an equation:


z=x+3y

With the constraints:


\begin{gathered} y\ge-(2)/(3)x+2 \\ . \\ y\leq(3)/(2)x+2 \\ . \\ y\leq-5x+15 \end{gathered}

We need to find the vertices of the region to find the values of x.

The next step is to equate the equations by pairs:


\begin{cases}y={-(2)/(3)}x+2 \\ y={(3)/(2)x+2}\end{cases}
-(2)/(3)x+2=(3)/(2)x+2

And solve:


\begin{gathered} 2-2=x((3)/(2)+(2)/(3)) \\ . \\ 0=x((3)/(2)+(2)/(3)) \\ . \\ x=0 \end{gathered}

Now, we can find y:


y=-(2)/(3)\cdot0+2=2

This vertex is: (0, 2)

Now, the next pair:


\begin{gathered} \begin{cases}y={(3)/(2)x+2} \\ y={-5x+15}\end{cases} \\ \end{gathered}
\begin{gathered} (3)/(2)x+2=-5x+15 \\ . \\ (3)/(2)x+5x=15-2 \\ . \\ x((3)/(2)+(10)/(2))=13 \\ . \\ (13)/(2)x=13 \\ . \\ x=13\cdot(2)/(13) \\ . \\ x=2 \end{gathered}

And find the value of y:


y=-5\cdot2+15=-10+15=5

The coordinates of this vertex are: (2, 5)

Finally, the last pair:


\begin{cases}y={-(2)/(3)}x+2 \\ y={-5x+15}\end{cases}
\begin{gathered} -(2)/(3)x+2=-5x+15 \\ . \\ -(2)/(3)x+5x=15-2 \\ . \\ x((15)/(3)-(2)/(3))=13 \\ . \\ (13)/(3)x=13 \\ . \\ x=13\cdot(3)/(13)=3 \end{gathered}

Now find y:


y=-5\cdot3+15=-15+15=0

The coordinates of this vertex are: (3, 0)

Now, we need to evaluate z on those vertices to find the maximum and minimum values of z.

First vertex (0, 2):


z=0+3\cdot2=6

Second vertex (2, 5):


z=2+3\cdot5=2+15=17

Third vertex (3, 0)


z=3+3\cdot0=3

The answer is:

Maximum value of z: 17

Minimum value of z: 3

User Josh Zarrabi
by
5.5k points