r: Amount of raisins used (in lbs)
a: Amount of almonds used (in lbs)
Total lbs used: 12
Raisins cost: 5.10 per lb
Almonds const: 3.30 per lb
From the problem, we know that:
![a+r=12...(1)](https://img.qammunity.org/2023/formulas/mathematics/college/ri3g5gkexadjg0kztkalgc55l2dt5strxa.png)
If the mixture cost 3.90 per lb, and we have 12 lbs of the mixture, then the total cost is:
![12\cdot3.90=46.8](https://img.qammunity.org/2023/formulas/mathematics/college/wan56kncjcial53c07givw13nbc7piwrgh.png)
Then, we have another equation:
![5.1r+3.3a=46.8...(2)](https://img.qammunity.org/2023/formulas/mathematics/college/otrpcuh749zxwtwjhn9c04m65p5gm285fz.png)
From equation (1):
![a=12-r...(3)](https://img.qammunity.org/2023/formulas/mathematics/college/dejy2qr3aku5qyr3m495w1o1tmrta5jbes.png)
Using (3) on (2):
![5.1r+3.3(12-r)=46.8](https://img.qammunity.org/2023/formulas/mathematics/college/zw67yfwa7xxjwcue330y0cb3o0fc6siqow.png)
Solving this equation for r:
![\begin{gathered} 5.1r+39.6-3.3r=46.8 \\ 1.8r=7.2 \\ \Rightarrow r=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u14t1juf8d1c154yifzvz1fzvktmqos8a5.png)
Using this result on (3):
![\begin{gathered} a=12-4 \\ \\ \Rightarrow a=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/khpuj0wen6ittsj0xf1vs0gdkbdop3ksod.png)
Answer:
Siobhan used 8 lbs of almonds and 4 lbs of raisins.