The given expression is:
![(1-\cot y)/(\sin y-\cos y)](https://img.qammunity.org/2023/formulas/mathematics/college/ca8wgjazjtfc91kp66riww4z56d9ygscjv.png)
It is required to simplify to a single trigonometry function using sin y and cos y.
To do this, use trigonometry identity:
![\cot y=(\cos y)/(\sin y)](https://img.qammunity.org/2023/formulas/mathematics/college/xf73k86pkh2xooz66yd5yakyrw0loy44ut.png)
Hence, the expression can be written as:
![\begin{gathered} (1-\cot y)/(\sin y-\cos y)=(1-(\cos y)/(\sin y))/(\sin y-\cos y) \\ Rewrite\text{ 1 as }(\sin y)/(\sin y)\text{:} \\ =((\sin y)/(\sin y)-(\cos(y))/(\sin(y)))/(\sin(y)-\cos(y)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gffva1y4rsrg9os12aghs3gfgat9886tx8.png)
Simplify the numerator:
![((\sin y-\cos(y))/(\sin(y)))/(\sin(y)-\cos(y))](https://img.qammunity.org/2023/formulas/mathematics/college/qkxu63zykazntovgocgzlr63zbc7e8bebq.png)
Simplify the expression further:
![(\sin y-\cos y)/(\sin y(\sin y-\cos y))](https://img.qammunity.org/2023/formulas/mathematics/college/thbwvqcpnjl1w2ndy9ydlffkej0recvhnc.png)
Cancel out common factors in the denominator and numerator:
![\frac{\cancel{\sin(y)-\cos(y)}}{\sin(y)(\cancel{\sin(y)-\cos(y)})}=(1)/(\sin(y))](https://img.qammunity.org/2023/formulas/mathematics/college/ej8aqh1gn27udull39koqnihlb3u5qsy1i.png)
Hence, the required answer is 1/sin(y).