4.7k views
2 votes
Look at photo for accurate description and remember to round to the nearest TENTH as needed

Look at photo for accurate description and remember to round to the nearest TENTH-example-1

1 Answer

6 votes

\begin{gathered} 25.3\Rightarrow128.9\text{ \degree} \\ 12.3\Rightarrow22.2\text{ \degree } \\ 15.7\Rightarrow28.8\text{ \degree } \end{gathered}

Step-by-step explanation

to solve this we need to use the law of cosine

it says,


c^2=a^2+b^2-2ab\cos (C)

then

Step 1

let


\begin{gathered} c=25.3 \\ a=12.3 \\ b=15.7 \\ m\angle C=C \end{gathered}

replace


\begin{gathered} c^2=a^2+b^2-2ab\cos (C) \\ 25.3^2=12.3^2+15.7^2-2(12.3)(15.7)\cos \text{ C} \\ 640.09=151.29+246.49-386.22\cos \text{ C} \\ 640.09=397.78-386.22\cos \text{ C} \\ \text{subtract 397.78 in both sides} \\ 640.09-397.78=\text{-}379.78+397.78-386.22\cos \text{ C} \\ 242.22=-386.22\cos \text{ C} \\ \text{divide both sides by -386.22} \\ (242.22)/(-386.22)=(-386.22)/(-386.22)\cos \text{ C} \\ -0.6271555072=\cos \text{ C} \\ \text{ inverse cos in both sides} \\ \cos ^(-1)(-0.627155507)=\cos ^(-1)(\cos C) \\ 128.858=C \\ \text{rounded} \\ C=128.9\text{ \degree} \end{gathered}

images

128.9 °

Step 2

angle across the side 12.3

exacty as the previous step , we just need to reorder, so


\begin{gathered} b^2=a^2+c^2-2ab\cos (B) \\ \text{replace} \\ 12.3^2=25.3^2+15.7^2-2(25.3)(15.7)\cos B \\ 151.29=640.09+246.49-2(25.3)(15.7)\cos \text{ B} \\ 151.29=886.58-2(25.3)(15.7)\cos \text{ B} \\ \text{subtract 886.58 in both sides} \\ 151.29-886.58=-886.58+886.58-2(25.3)(15.7)\cos \text{ B} \\ -735.29=-794.42\cos B \\ (-735.29)/(-794.42)=\cos B \\ 0.9255683391=\cos \text{ B} \\ \cos ^(-1)(0.9255683391)=B \\ 22.2\text{=B} \end{gathered}

Step 3

finally, the angle across the side 15.7


\begin{gathered} a^2=b^2+c^2-2ab\cos (B) \\ \text{replace} \\ 15.7^2=12.3^2+25.3^2-2(12.3)(25.3)\cos A \\ 246.49=151.29+640.09-622.38\cos \text{ A} \\ 246.49=791.38-622.38\cos \text{ A} \\ \text{subtract 791.38 in both sides} \\ 246.49-791.38=-791.38+791.38-622.38\cos \text{ A} \\ -547.89=-622.38\cos \text{ A} \\ (-547.89)/(-622.38)=\cos \text{ A} \\ 0.8754940711=\cos \text{ A} \\ \cos ^(-1)(0.8754940711)=A \\ 28.84=A \\ 28.8=A \end{gathered}

I hope this helps you

Look at photo for accurate description and remember to round to the nearest TENTH-example-1
Look at photo for accurate description and remember to round to the nearest TENTH-example-2
Look at photo for accurate description and remember to round to the nearest TENTH-example-3
User Francesco Clementi
by
6.5k points