Given the function:
![g(x)=-3x^5+2x^4-5x^2+8](https://img.qammunity.org/2023/formulas/mathematics/high-school/8w3ykjtydd7m0lce5nkwlrqtlqalfjw7qp.png)
Let's find the limit of the function as x approaches infinity and also as x approaches negative infinity.
We have:
![\begin{gathered} \lim _(x\to\infty)-3x^5+2x^4-5x^2+8 \\ \\ \lim _(x\to\infty)g(x)=-\infty \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8gk5cdgzugtg5qkaewtf8fc3cso194fff2.png)
The limit at infinity of a polynomial whose leading coefficient is negative is negative infinity.
• Also, the limit of the function at negative infinity:
![\begin{gathered} g(x)=-3x^5+2x^4-5x^2+8 \\ \\ \lim _(x\to-\infty)g(x)=\infty \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/eqegtvf49uqxbc17pxphaw6xg5adt2dy5z.png)
The limit at negtaive infinity of a polynomial whose leading coefficient is negative is infinity.
ANSWER:
![\begin{gathered} \lim _(x\to\infty)g(x)=-\infty \\ \\ \lim _(x\to-\infty)g(x)=\infty \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/v3uh4lnt663lbgtko0rbnb8b9b9okycd7g.png)