Answer:
-196 kJ
Step-by-step explanation:
By the Hess' Law, the enthalpy of a global reaction is the sum of the enthalpies of the steps reactions. If the reaction is multiplied by a constant, the value of the enthalpy must be multiplied by the same constant, and if the reaction is inverted, the signal of the enthalpy must be inverted too.
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
S(s) + O₂(g) → SO₂(g) ΔH = -297 kJ (inverted and multiplied by 2)
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
2SO₂(g) → 2S(s) + 2O₂(g) ΔH = +594 kJ
-------------------------------------------------------------
2S(s) + 3O₂(g) + 2SO₂(g) → 2SO₃(g) + 2S(s) + 2O₂(g)
Simplifing the compounds that are in both sides (bolded):
2SO₂(g) + O₂(g) → 2SO₃(g) ΔH = -790 + 594 = -196 kJ