Answer:
• 259 degrees
,
• 112.56m
,
• 56.28m
Step-by-step explanation:
In the circle:
![\text{mArc ADC}\cong\text{mArc BDC}](https://img.qammunity.org/2023/formulas/mathematics/college/sac1qzqntrf0ttiprak852i8phr8glrpeo.png)
The sum of the angle in a circle = 360 degrees
![\begin{gathered} \widehat{}\widehat{\text{ADC}}\text{+}\widehat{B\text{DC}}\text{+}\widehat{A\text{DB}}=360\degree \\ \widehat{\text{ADC}}\text{+}\widehat{B\text{DC}}\text{+}101\degree=360\degree \\ 2*\widehat{B\text{DC}}\text{+}101\degree=360\degree \\ 2*\widehat{B\text{DC}}=360\degree-101\degree \\ 2*\widehat{B\text{DC}}=259\degree \\ \widehat{B\text{DC}}=(259\degree)/(2) \\ \widehat{\text{ADC}}=\widehat{B\text{DC}}=129.5\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/youiodjqzu9m0vtvyk8u1pe9jjri4ry0lt.png)
Part 8
The measure of arc ACB.
![\begin{gathered} \text{ }\widehat{ACB}=360\degree-101\degree \\ =259\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8dkfdt7o5cmkwamr7fsczfoicuhthuixym.png)
Part 9
Length of arc ACB
![\begin{gathered} \text{Length of an arc=}(\theta)/(360\degree)*2\pi r \\ \theta=\text{central angle} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bdnj1qtjl2j86mj3yd4777q3xhkf3ofemn.png)
Therefore:
![\begin{gathered} \text{Length of }\widehat{ACB}=(259\degree)/(360\degree)*2*\pi*24.9 \\ =112.56m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s73kj8ktxf5365buibk5c7lsh8npjo1iil.png)
Part 10
Length of arc CB.
The central angle subtended by CB = 129.5 degrees
Therefore:
![\begin{gathered} \text{Length of }\widehat{CB}=(129.5\degree)/(360\degree)*2*\pi*24.9 \\ =56.28m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dcer4uw182bsjq7dxkhk1z6kmtggn1hihs.png)