Let x be the number of 2-point shots
Let y be the number of 1-point shots
The team made 57 successful shots: The sum of x and y is 57:
![x+y=57](https://img.qammunity.org/2023/formulas/mathematics/college/85hayd7gphj8syywu2whc5athpf3bzlvfn.png)
The team scored 94 points in all: 2 times x and y sum 94:
![2x+y=94](https://img.qammunity.org/2023/formulas/mathematics/college/xz8542rcq9jrf950yoq91t6p0nfpyvswkc.png)
System of equations:
![\begin{gathered} x+y=57 \\ 2x+y=94 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nbc0xnh93jclwxcxcxow49s7i3ranszkjy.png)
Use elimination method to solve the system of equations:
1. Subtract the equations:
2. Solve x:
![\begin{gathered} -x=-37 \\ \\ \text{Multiply both sides of the equation by -1:} \\ (-1)(-x)=(-1)(-37) \\ x=37 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c37e7zqnt7ol1yfawy0qfsl7228xzgklfv.png)
3. Use the value of x to solve y:
![\begin{gathered} x+y=57 \\ 37+y=57 \\ \\ \text{Subtract 37 in both sides of the equation:} \\ 37-37+y=57-37 \\ y=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uztgtia8sj5arx5cuxaura82dwjn2fqghz.png)
Solution for the system x=37 and y=20
Then, there were 37 2-point shots and 20 1-point shots