75.8k views
4 votes
Use vectors to find the interior angles (in degrees) of the triangle with the given vertices. (Round your answers to two decimal places.)

Use vectors to find the interior angles (in degrees) of the triangle with the given-example-1

1 Answer

4 votes

1. Find the vector between each pair of vertices:

To make it more easy give to each vertex a letter:

A(1,3)

B(3,5)

C(2,6)


\begin{gathered} \vec{AB}=(3,5)-(1,3) \\ \vec{AB}=(3-1,5-3) \\ \vec{AB}=(2,2) \end{gathered}
\begin{gathered} \vec{BC}=(2,6)-(3,5) \\ \vec{BC}=(2-3,6-5) \\ \vec{BC}=(-1,1) \end{gathered}
\begin{gathered} \vec{CA}=(1,3)-(2,6) \\ \vec{CA}=(1-2,3-6) \\ \vec{CA}=(-1,-3) \end{gathered}

2. Find the magnitude of each vector:


\begin{gathered} \lvert{AB}\rvert=√(2^2+2^2)=√(4+4)=√(8) \\ \lvert{BC}\rvert=\sqrt{(-1)\placeholder{⬚}^2+1^2}=√(1+1)=√(2) \\ \lvert{CA}\rvert=\sqrt{(-1)\placeholder{⬚}^2+(-3)\placeholder{⬚}^2}=√(1+9)=√(10) \end{gathered}

3. Fid the dot product beween each pair of vectors:


\begin{gathered} \vec{AB}\cdot\vec{BC}=2*-1+2*1=-2+2=0 \\ \vec{AB}\cdot\vec{CA}=2*-1+2*-3=-2-6=-8 \\ \vec{CA}\cdot\vec{BC}=-1*-1+-3*1=-1-3=-4 \end{gathered}

4. Use the next formula to find the angle betweeen two vectors:


\theta=\cos^(-1)((a\cdot b)/(√(a)\cdot√(b)))

Angle between AB and BC:


\begin{gathered} \theta=\cos^(-1)((0)/(√(8)\cdot√(2))) \\ \\ \theta=\cos^(-1)(0) \\ \\ \theta=90º \end{gathered}

Angle between AB and CA:


User Martin Suchan
by
3.8k points