178k views
0 votes
Quadrilateral WXYZ is a rhombus and m∠XWY=u–44°. What is the value of u?

Quadrilateral WXYZ is a rhombus and m∠XWY=u–44°. What is the value of u?-example-1
User Morris Lin
by
2.9k points

1 Answer

3 votes

It is given that


\angle XWY=u-44^o,\text{ and }\angle YZW=110^o

Recall that the adjacent angles are supplementary in a rhombus.


\angle XWZand\text{ }\angle YZW\text{ are supplementary angles.}

The sum of supplementary angles is 180 degrees.


\angle XWZ+\angle YZW=180^o\text{.}


Substitute\text{ }\angle YZW=110^o,\text{ we get}


\angle XWZ+110^o=180^o\text{.}


\angle XWZ=180^o-110^o


\angle XWZ=70^o


\angle XWZ=\angle XWY+\angle YWZ

Recall that the diagonals bisect the angles of the rhombus.


\angle XWY=\angle YWZ


\angle XWZ=\angle XWY+\angle XWY


\angle XWZ=2\angle XWY


Substitute\text{ }\angle XWZ=70^o\text{ and }\angle XWY=u-44^o,\text{ we get}


70^o=2(u-44^0)


(70^o)/(2)=u-44^0


35^o=u-44^0


35^o+44^o=u
u=79^o

Hence the value of u=79 degrees.

User Jared Chu
by
3.6k points