Let v be the number of students in each Van and b be the number of students in each Bus.
If High School A filled 9 vans and 10 buses, the toal number of students is:
![9v+10b](https://img.qammunity.org/2023/formulas/mathematics/college/dc84z6lt7aryiqi7ohv46zpc7izw01hwm0.png)
And this is equal to 653, so:
![9v+10b=653](https://img.qammunity.org/2023/formulas/mathematics/college/bjlg5qi46ru4j2iqasoc2wjxisis2uix2f.png)
If High School B filled 9 vans and 6 buses, the toal number of students is:
![9v+6b](https://img.qammunity.org/2023/formulas/mathematics/college/n7t1pv9t8ffkbv6v0ho76ybuzu20ewj7z1.png)
And this is equal to 417, so:
![9v+6b=417](https://img.qammunity.org/2023/formulas/mathematics/college/t45mltfo7iirbmmubrbsi06kvx8wwepn18.png)
So, the system of equations is:
![\begin{gathered} 9v+10b=653 \\ 9v+6b=417 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e4a189z15kpcvvh3f8nvgs5tkyaodt1e9r.png)
If we substract the second equation from the first, we will have:
![\begin{gathered} 9v+10b=653 \\ -(9v+6b=417) \\ ------------------ \\ 0v+4b=236 \\ 4b=236 \\ b=(236)/(4) \\ b=59 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wa5wfkvj8jixgayst26vpdr6wsy29lgqk1.png)
With the value for b, we can substitute into either eqution and solve for v:
![\begin{gathered} 9v+10b=653 \\ 9v+10\cdot59=653 \\ 9v+590=653 \\ 9v=653-590 \\ 9v=63 \\ v=(63)/(9) \\ v=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oz0y28qned0inrorfjtaowwgsxuh4vx998.png)
Thus, the number of students in each Van is 7 and the number of students in each Bus is 59.