Given:
The given line passes through (2,4) and (-6,-6)
Required: The equation of the line
Step-by-step explanation:
First, find the slope using the two point formula.
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ =(-6-4)/(-6-2) \\ =(-10)/(-8) \\ =(5)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wbsydalv2jenqhhrkvghgngjm0e0xmae0n.png)
The slope-intercept form of a line is of the form y = mx+c, where m is the slope and c is the y-intercept.
Substitute the obtained value of m into y = mx+c.
![y=(5)/(4)x+c](https://img.qammunity.org/2023/formulas/mathematics/college/bklwc6gmz4knmqecsur1le4elpw418euak.png)
Plug the point (2, 4) into the equation to find c.
![\begin{gathered} 4=(5)/(4)\cdot2+c \\ c=4-(5)/(2) \\ =(3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ed7a54415uinv82rokdfktjesyasxkrwhf.png)
Substitute the value of c into y = (5/4)x+c.
![y=(5)/(4)x+(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/hiu8riurhq94bbuwjt6g2etkpa0yghx1xl.png)
Final Answer:
![y=(5)/(4)x+(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/hiu8riurhq94bbuwjt6g2etkpa0yghx1xl.png)