78.7k views
3 votes
What is the solution to the system (1)x-y+a=-1(2)x+y+3z=-3(3)2x-y+2z=0

User Melvnberd
by
7.9k points

1 Answer

2 votes

Convert first the given into an augmented matrix.


\mleft[\begin{array}c1 & -1 & 1 & 1 \\ 1 & 1 & 3 & 3 \\ 2 & -1 & 2 & 0\end{array}\mright]

Next, perform Gauss-Jordan elimination or row reduced echelon form to find each values for x, y, and z


\begin{gathered} R_2=R_2-R_1\mleft[\begin{array}ccc1 & -1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 2 & -1 & 2 & 0\end{array}\mright] \\ R_3=R_3-2R_1\mleft[\begin{array}ccc1 & -1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 1 & 0 & -2\end{array}\mright] \\ R_2=(R_(2))/(2)\mleft[\begin{array}c1 & -1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -2\end{array}\mright] \end{gathered}
\begin{gathered} R_1=R_1+R_2\mleft[\begin{array}ccc1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -2\end{array}\mright] \\ R_3=R_3-R_2\mleft[\begin{array}c1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & -3\end{array}\mright] \end{gathered}
\begin{gathered} R_3=-R_3\mleft[\begin{array}ccc1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3\end{array}\mright] \\ R_1=R_1-2R_3\mleft[\begin{array}ccc1 & 0 & 0 & -4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3\end{array}\mright] \\ R_2=R_2-R_3\mleft[\begin{array}ccc1 & 0 & 0 & -4 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3\end{array}\mright] \end{gathered}

At the last solution of the row reduced echelon form, we determine that the solution to the system is (x,y,z) = (-4,-2,3)

User Bcause
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories