Given:
The load varies as width and square of the depth and inversely as the length,
L₁=7127 lb
w₁=5 in=0.42 ft
d₁=7 in=0.58 ft
l₁=13 ft
w₂=3 in=0.25 ft
d₂=3 in=0.25 ft
l₂=18 ft
To find:
The load.
Step-by-step explanation:
From the question,
![L=(kwd^2)/(l)](https://img.qammunity.org/2023/formulas/physics/college/6vu9scdcji86ibphwasublh8vnfrqct0ql.png)
Where k is the proportionality constant.
Thus, substituting the 1st set of values in the above equation,
![\begin{gathered} L_1=(kw_1d_1^2)/(l_1) \\ 7172=(k*0.42*0.58)/(13) \\ \implies k=(7172*13)/(0.42*0.58) \\ =382742.2\text{ lb/ft}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wtr8lrentmy656uxak25ypo2kan29g0cfs.png)
Substituting the second set of values,
![\begin{gathered} L=(382742.2*0.25*0.25)/(18) \\ =1329\text{ lb} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jj41q57yw3hgxryx0ufc246pgyet1sdk4k.png)
Final answer:
A 3 in wide, 3 in deep, and 18 ft long beam can support a load of 1329 lb