203k views
3 votes
Need help with this I’m having a hard time solving it, it’s a practice from my ACT prep guide 21-22

Need help with this I’m having a hard time solving it, it’s a practice from my ACT-example-1
User PJ Davis
by
8.0k points

1 Answer

1 vote

the exact value of cos(α - β) = 33/65

Step-by-step explanation:

tan α = -12/5

where angle α lies in the 2nd quadrant

In the second quadrant, only sine is positive. tan and cos will be negative

cos β = 3/5

where angle β lies in the 4th quadrant

In the 4th quadrant, only cos is positive. tan and sin will be negative

We are to find cos(α - β)

In trigonometry identity:


\cos \mleft(\alpha-\beta\mright)\text{ = }cos\alpha\text{ cos}\beta\text{ - sin}\alpha\text{ sin}\beta

we need to find cosα, sinα and sin β


\begin{gathered} \tan \text{ = opposite/adjacent} \\ \text{opp = 12, adj = 5},\text{ hyp} \\ \text{hyp}^2=(-12)^2+5^2\text{ = 169 } \\ \text{hyp = }\sqrt[]{169} \\ \text{hyp = 13} \\ \\ \cos \alpha\text{ = }(adj)/(hyp) \\ \cos \alpha\text{ = }(5)/(13) \\ Since\text{ }\cos \text{ is negative in II, }\cos \alpha\text{ = -}(5)/(13) \end{gathered}

Next we will find sinα:


\begin{gathered} sin\text{ = opp/hyp} \\ \sin \text{ }\alpha\text{ = }(12)/(13)\text{ (sine is positive in quadrant II)} \end{gathered}

Next we wll find sin β:


\begin{gathered} \sin \text{ = opp/hyp} \\ \cos \beta=(3)/(5) \\ \cos \text{ = adj/hyp} \\ \text{adj = 3, hyp = 5} \\ \text{hyp}^2=opp^2+adj^2 \\ 5^2\text{ = }opp^2+\text{ }3^2 \\ \text{opp}^2\text{ = 25 -9} \\ \text{opp = }\sqrt[]{16}\text{ = 4} \end{gathered}
\begin{gathered} \sin \text{ }\beta\text{ = 4/5 } \\ \text{Because sin is negative in 4th quadrant, sin }\beta\text{ = -4/5 } \end{gathered}

substitute the values:


\begin{gathered} \cos (\alpha-\beta)\text{ = }cos\alpha\text{ cos}\beta\text{ - sin}\alpha\text{ sin}\beta \\ \cos (\alpha-\beta)\text{ =}\frac{\text{ }-5}{13}\text{ }*(3)/(5)\text{- }(12)/(13)\text{ }*\text{ }(-4)/(5) \\ \cos (\alpha-\beta)\text{ =}\frac{\text{ }-3}{13}\text{ - }(-48)/(65) \\ \cos (\alpha-\beta)\text{ =}\frac{\text{ }-3}{13}\text{+ }(48)/(65) \end{gathered}

simplify:


\begin{gathered} \cos (\alpha-\beta)\text{ = }(-3(5)+48)/(65)\text{ } \\ \cos (\alpha-\beta)\text{ = }(-15+48)/(65)\text{ } \\ \cos (\alpha-\beta)\text{ = }(33)/(65)\text{ } \end{gathered}

Hence, the exact value of cos(α - β) = 33/65

User Bvarga
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories