Answer:
The solution to the system of equation is the point which the two lines meet.
![\begin{gathered} (-2,1) \\ x=-2 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9na5qaa575t5ga757tl5kg2rs3oaawb0ch.png)
Step-by-step explanation:
Given the system of equation;
![\begin{gathered} y=-2x-3 \\ y=(1)/(2)x+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/es72uixvbql6zwohy49ylsb1kr9ioi41ah.png)
To plot the linear graphs, le us derive two ordered pairs on each equation;
![\begin{gathered} At\text{ x = 2} \\ y=-2x-3=-2(2)-3 \\ y=-7 \\ (2,-7) \\ \\ y=(1)/(2)x+2 \\ y=(1)/(2)(2)+2 \\ y=1+2 \\ y=3 \\ (2,3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/go362zl32arecy7nfp3icryqi3qfjjlp81.png)
![\begin{gathered} at\text{ x = -2} \\ y=-2x-3=-2(-2)-3 \\ y=4-3 \\ y=1 \\ (-2,1) \\ \\ y=(1)/(2)x+2 \\ y=(1)/(2)(-2)+2 \\ y=-1+2 \\ y=1 \\ (-2,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nt7az3e1i7yjmy1c074uolkfespuvuyvzq.png)
Graphing the points we have;
Therefore, the solution to the system of equation is the point which the two lines meet.
![\begin{gathered} (-2,1) \\ x=-2 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9na5qaa575t5ga757tl5kg2rs3oaawb0ch.png)