202k views
3 votes
Hi, can you help me answer this question please, thank you

1 Answer

3 votes

From the given data;


\begin{gathered} \text{ sample size, n=43} \\ \text{ sample mean, }\bar{x}=64 \\ \text{ population standard deviation,}\sigma=14.1 \end{gathered}
\begin{gathered} \text{significance level,}\alpha=1-confidence\text{ interval} \\ \alpha=1-0.9 \\ \alpha=0.1 \end{gathered}
The\text{ critical value}=z_{(\alpha)/(2)}=z_{(0.1)/(2)}=z_(0.05)=1.645\text{ ( from the }z-table)
\begin{gathered} \text{Therefore,} \\ critical\text{ value}=\pm z_{(\alpha)/(2)}=\pm1.645 \end{gathered}
\text{Margin of error, E=}z_{(\alpha)/(2)}*\frac{\sigma}{\sqrt[]{n}}
\begin{gathered} E=1.645*\frac{14.1}{\sqrt[]{43}} \\ E=1.645*2.1502 \\ E=3.5371 \end{gathered}

Limits of 90% confidence interval are given by:


\begin{gathered} \text{lower limit}=\bar{x}-E \\ \text{lower l}imit=64-3.5371 \\ \text{lower limit=60.463} \end{gathered}
\begin{gathered} upper\text{ limit=}\bar{\text{x}}+E \\ \text{upper limit=64+3.5371} \\ \text{upper limit=67.5371} \end{gathered}

Hence, the 90% confidence interval for the true population mean textbook weight is:


60.463<\mu<67.5371

User MPV
by
2.9k points