ANSWER
0.00018
Step-by-step explanation
First, we have to solve the equation from question 2 for I,
![d=\log (I^(20))](https://img.qammunity.org/2023/formulas/mathematics/college/v1nxcmu6a1e9ofuqkotimsrcr46pcx270q.png)
Raise 10 to each of the sides of the equation,
![\begin{gathered} 10^d=10^{\log (I^(20))} \\ 10^d=I^(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vimz8rtn1ah6mqafc4q808cces6txlvnj0.png)
And take the 20th root to both sides,
![I=10^(d/20)](https://img.qammunity.org/2023/formulas/mathematics/college/n5n49t6kaalqculdq46vjq331lcebvyhuz.png)
Now, we have to find the ratio of the intensity for the whisper and the intensity for the concert,
![(I_(whisper))/(I_(concert))=(10^(45/20))/(10^(120/20))=10^((45-120)/20)=10^(-3.75)\approx0.00018](https://img.qammunity.org/2023/formulas/mathematics/college/jfqok4p0mjv23uw98nu6lfacc0s14bvpno.png)
The intensity of a whisper is 0.00018 times the intensity of a rock concert.