2, a)
Given:
![f\mleft(x\mright)=-3x^3+3x^2-2x+1](https://img.qammunity.org/2023/formulas/mathematics/college/2rhl5uago0e1uxbndlk0xps770kmfanpz9.png)
Aim:
We need to find the end behavior, the maximum number of x-intercepts, the existence of a maximum or minimum value of the given functions.
Step-by-step explanation:
Use graphing technology.
The graph of the given function is
One end of the curve is moving upward to infinity when x tends to negative infinity and another end is moving down to negative infinity when x tends to infinity.
Take the limit to infinity on the given function to find the end behavior.
![\lim_(x\to\infty)f\mleft(x\mright)=\operatorname{\lim}_(x\to\infty)\mleft(-3x^3+3x^2-2x+1\mright)]()
![\lim_(x\to\infty)f\mleft(x\mright)=-3\infty+3\infty-2\infty+1=-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/kkowcj8eo5w8klo0926l4dbshtotix6izf.png)
![\lim_(x\to\infty)f\mleft(x\mright)=-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/nyge18zk61r2tt16h6srnld3dpon0mqcf5.png)
Take limit to negative infinity on the given function to find the end behavior.
![\lim_(x\to-\infty)f\mleft(x\mright)=\operatorname{\lim}_(x\to-\infty)\mleft(-3x^3+3x^2-2x+1\mright)]()
![\lim_(x\to-\infty)f\mleft(x\mright)=\infty](https://img.qammunity.org/2023/formulas/mathematics/college/jbxbwv2ob2h4e6noq5z14cjv2nbn3u7dcn.png)
End behavior:
![f\mleft(x\mright)=\infty\text{ as x}\rightarrow-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/9wriqqs3n1aw39ebpb5vvc8vezdete7ex0.png)
![f\mleft(x\mright)=-\infty\text{ as x}\rightarrow\infty](https://img.qammunity.org/2023/formulas/mathematics/college/rurtoz7w4d2df1a26wry2ua0d4bl2fp3yw.png)
We know that the x-intercept is the intersection point where the function f(x) crosses the x-axis.
The x-intercepts = (0.718.0)
Differentiate the given function with respect to x and set the result to zero.
Solve for x to find the existence of a maximum or minimum value of the given function.
![f\mleft(x\mright)=-3x^3+3x^2-2x+1](https://img.qammunity.org/2023/formulas/mathematics/college/2rhl5uago0e1uxbndlk0xps770kmfanpz9.png)
Differentiate the given function with respect to x
![f^(\prime)\mleft(x\mright)=-3*3\left(x^2\right)+3*2\left(x\right)-2](https://img.qammunity.org/2023/formulas/mathematics/college/m9004090r9h1uq7wiot7g6lkuqi9pwc2zj.png)
![f^(\prime)\mleft(x\mright)=-9x^2+6x-2](https://img.qammunity.org/2023/formulas/mathematics/college/ehpmvp5u8lmygutfue55blqhv72gtw7p45.png)
SEt f'(x) =0 and solve for x.
![-9x^2+6x-2=0](https://img.qammunity.org/2023/formulas/mathematics/college/3js1y4z3pgt32sdolio9lm4t4xrzmbudki.png)
Multiply both sides by (-1).
![9x^2-6x+2=0](https://img.qammunity.org/2023/formulas/mathematics/college/qrbvu9yqxurcsnc57vbqs1lxe4ihcq57gi.png)
which is of the form
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
where a =9, b=-6 and c=2.
Use quadratic formula.
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/jr19ixi2zltkocy82qhxfiop5lyv4hzbkm.png)
Substitute a =9, b=-6, and c=2 in the equation.
![x=(-\lparen-6)\pm√(\left(-6\right)^2-4*9*2))/(2*9)](https://img.qammunity.org/2023/formulas/mathematics/college/5abhnzmniiptcsy5b5rsrrpj98y6kduf60.png)
![x=(6\pm√(36-72))/(18)](https://img.qammunity.org/2023/formulas/mathematics/college/idkc0zxa112equtt67quv3eijl839e3ujm.png)
![x=(6\pm i6)/(18)](https://img.qammunity.org/2023/formulas/mathematics/college/1ohx6g5w0ifxldt5pne91xvamvkolp8yy0.png)
![x=(1+i)/(2),(1-\imaginaryI)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/73e2nabi977k3uawnhwds0ib6rp9ro5xna.png)
We get a complex value for x.
There is no maximum or minimum value of the given function in a real number.
Final answer:
![f\mleft(x\mright)=\infty\text{ as x}\rightarrow-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/9wriqqs3n1aw39ebpb5vvc8vezdete7ex0.png)
![f\mleft(x\mright)=-\infty\text{ as x}\rightarrow\infty](https://img.qammunity.org/2023/formulas/mathematics/college/rurtoz7w4d2df1a26wry2ua0d4bl2fp3yw.png)
The x-intercepts = (0.718.0)
There is no maximum or minimum value for the given equation.