The expression
in terms of cosines is
![\cos^2(3x) - \cos^4(3x)](https://img.qammunity.org/2023/formulas/mathematics/college/fbbil3anl2ur86e0998x6p7m296qsfqn3k.png)
How to rewrite the expression in terms of cosines
From the question, we have the following parameters that can be used in our computation:
![\sin^2(3x)\cos^2(3x)](https://img.qammunity.org/2023/formulas/mathematics/college/l3acrtcj21yx8h2bg0vjlf480gazf2r1zj.png)
The sin and cosine identity represented as
![\sin^2(x) + \cos^2(x) = 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/z59u9chl2uvl3mdcfvgfdw8bypbj1dvbd3.png)
So, we have
![\sin^2(3x)\cos^2(3x) = [1 - \cos^2(3x)]\cos^2(3x)](https://img.qammunity.org/2023/formulas/mathematics/college/p8vj15etdlu601z6vlsj4wh29f5l2or4sh.png)
Expand the equation
![\sin^2(3x)\cos^2(3x) = \cos^2(3x) - \cos^4(3x)](https://img.qammunity.org/2023/formulas/mathematics/college/rvchmbmq0yj0v8qvu2h829ihnrxvfr1qxo.png)
Hence, the expression in terms of cosines is
![\cos^2(3x) - \cos^4(3x)](https://img.qammunity.org/2023/formulas/mathematics/college/fbbil3anl2ur86e0998x6p7m296qsfqn3k.png)