190k views
3 votes
Solve the triangle. (Do not round until the final answer. Round angles to the nearest degree and side lengths to the nearest tenth of a unit.)C=___∠A=___∠B=___

Solve the triangle. (Do not round until the final answer. Round angles to the nearest-example-1
User Uentee
by
6.1k points

1 Answer

2 votes

\begin{gathered} c=7.6 \\ \angle A=37 \end{gathered}

Step-by-step explanation

to solve this we need to use the cosine law

Law of cosines says


\begin{gathered} a^2=b^2+c^2-2bc\cdot\cos (A) \\ b^2=a^2+c^2-2ac\cdot\cos (B) \\ c^2=a^2+b^2-2ab\cdot\cos (C) \end{gathered}

then

Step 1

find c

Let


\begin{gathered} b=8 \\ a=5 \\ \angle C=67 \end{gathered}

now, let's find c


\begin{gathered} c^2=a^2+b^2-2bc\cdot\cos (C) \\ \text{replace} \\ c^2=5^2+8^2-2\cdot5\cdot8\cdot\cos (67) \\ c^2=25+64-31.25849028 \\ c^2=57.74 \\ \text{square root in both sides} \\ √(c^2)=√(57.74) \\ c=7.598 \\ \text{rounded} \\ c=7.6 \end{gathered}

Step 2

now,let's find the angle A


\begin{gathered} a^2=b^2+c^2-2bc\cdot\cos (A) \\ replace \\ 5^2=8^2+7.6^2-2\cdot8\cdot7.6\cdot\cos (A) \\ 25=64+57.76-121.6\text{ cos(A)} \\ 25=121.76-121.6(\cos A) \\ \text{subtract 121.76 in both sides} \\ 25-121.76=121.76-121.6(\cos A)-121.76 \\ -96.76=-121.6(\cos A) \\ \text{divide both sides by -121.6} \\ (-96.76)/(-121.6)=(-121.6(\cos A))/(-121.6) \\ 0.795=\cos \text{ (A)} \\ Inverse\text{ cosine} \\ \cos ^(-1)(0.795)=\cos ^(-1)(\cos \text{ (A))} \\ 37.276=\text{ A} \\ \text{rounded} \\ A=37\~\text{ =A} \end{gathered}

Step 3

Finally,let's find angle B

we can use the formula as we did in step 2 to find angle A, but also we can use this fact:

the sum of the internal angles in a triangle equals 180 ,so


\angle A+\angle B+\angle C=180

replace and solve for angle C


\begin{gathered} \angle A+\angle B+\angle C=180 \\ 37+\angle B+67=180 \\ 104+\angle B=180 \\ \text{subtract 104 in both sides} \\ 104+\angle B-104=180-104 \\ \angle B=76 \end{gathered}

Solve the triangle. (Do not round until the final answer. Round angles to the nearest-example-1
User Ron Michael
by
5.7k points