120k views
1 vote
Use the values provided to calculate each of missing values (need to answer questions a-c pics attached)

Use the values provided to calculate each of missing values (need to answer questions-example-1
Use the values provided to calculate each of missing values (need to answer questions-example-1
Use the values provided to calculate each of missing values (need to answer questions-example-2
User Kuzeko
by
7.9k points

1 Answer

6 votes

b) The general point-slope equation of a line is:


y=m\cdot(x-x_1)+y_1._{}

Where:

• (x1, y1) is a point of the line,

,

• m is the slope, given by:


m=(y_2-y_1)/(x_2-x_1),

where (x1, y1) and (x2, y2) are two points of the line.

From the table, we have the points:

• (x1, y1) = (5.3, 17.46),

,

• (x2, y2) = (5.9, 17.70).

Replacing these values in the equation of the slope, we get:


m=(17.70-17.46)/(5.9-5.3)=(0.24)/(0.6)=0.4.

Replacing m = 0.4 and (x1, y1) = (5.3, 17.46) in the general equation of the line, we get:


y=0.4\cdot(x-5.3)+17.46=0.4x-0.4\cdot5.3+17.46=0.4x+15.34.

The equation of the line is:


y=0.4x+15.34.

a) Using the equation of the line, we compute the blank values of y:


\begin{gathered} x=5.6\rightarrow y=0.4\cdot5.6+15.34=17.58, \\ x=6.3\rightarrow y=0.4\cdot6.3+15.34=17.86, \\ x=8.3\rightarrow y=0.4\cdot8.3+15.34=18.66. \end{gathered}

Replacing the value y = 18.00 in the equation of the line and solving for x, we get:


\begin{gathered} 18.00=0.4x+15.34, \\ 0.4x=18.00-15.34, \\ 0.4x=2.66, \\ x=(2.66)/(0.4)=6.65. \end{gathered}

Answer

a) Table

• x = 5.6, y = ,17.58

,

• x = 6.3, y = ,17.86

,

• x = ,6.65,, y = 18.00

,

• x = 8.3, y = ,18.66

b) Equation of the line

y = 0.4x + 15.34

c) These values are the same as the ones in part (a)

User Kokila
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.