Answer:
36.1 feet.
Step-by-step explanation:
From the diagram:
• The side length ,opposite ,angle 31° = x
,
• The side length ,adjacent to ,angle 31° = 60
Recall from trigonometry that:
![\tan \theta=\frac{\text{Opposite}}{\text{Adjacent}}](https://img.qammunity.org/2023/formulas/mathematics/college/zh1z0h8h9qwya49ao0kit5o17j5143hqf1.png)
This implies that:
![\tan 31=\frac{\text{x}}{\text{6}0}](https://img.qammunity.org/2023/formulas/mathematics/college/zziwfpnnjvbhp81xw2wwfa5zu8lkb6o8r5.png)
Cross multiply:
![\begin{gathered} x=60*\tan 31\degree \\ x=36.1\text{ feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ago62nigt1fg95efl4pv6jpp4o9psa9jy.png)
The length of HI is 36.1 feet (to the nearest tenth of a foot).