Mr Guny deposits $45,900 in a savings account
Principal, P = $45,900
Annual rate, R = 1.5%
Time, t = 1 year since it is componded quarterly,
Interest rate, r will be
![\begin{gathered} r=(R)/(100) \\ \text{Where R}=1.5\text{\%} \\ r=(1.5)/(100)=0.015 \\ r=0.015 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ik45xo6kg7iw3zg175867erun4nbgaby5b.png)
a) To find the first quarter's interest,
![\begin{gathered} I=P((r)/(n)) \\ \text{Where P}=\text{\$45,900} \\ r=0.015\text{ and } \\ n=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7n96spixg3526se83tkclyvzofgc64b80k.png)
Substitute the values into the above expression
![\begin{gathered} I=45900*(0.015)/(4)=(45900*3)/(800)=172.125 \\ I=\text{\$172.125} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d1cvvfr4zu96p07zrnvm0blnwmse3lztw8.png)
Hence, the first quarter's interest is $172.125
b) The first quarter's balance, A, will be
![\begin{gathered} A=P+I \\ \text{Where } \\ P=\text{\$45900} \\ I=\text{\$172.125} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8qlj12y99tqp0s92gjbrqztmvf5do8pv9l.png)
Substitute the values into the formula above
![\begin{gathered} A=P+I \\ A=45900+172.125=46072.125 \\ A=\text{\$}46072.125 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1ate0yfosfp9wmj3n2iu9pvwtw9f9hgbol.png)
Hence, the first quarter's balance is $46,072.125