Given the function:
![y=(3)/(4)\cos (4x)](https://img.qammunity.org/2023/formulas/mathematics/college/i010k8fa78zt9fduhwjvd34txudopbmeco.png)
If we compare this to the general form:
![y=A\cos (bx+\delta)](https://img.qammunity.org/2023/formulas/mathematics/college/5piog972rhgcylhskm37yx0fh8on9ml2lk.png)
Where A is the amplitude, δ is the phase and b is a parameter, we identify:
![\begin{gathered} A=(3)/(4) \\ \delta=0 \\ b=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xm633aba3uf9421gbcr8gthdchnenbily4.png)
So the amplitude of the function is 3/4.
For the period, we need to remember that the period of a cosine function is 2π. Then:
![y=(3)/(4)\cos (4x)=(3)/(4)\cos (4x+2\pi)=(3)/(4)\cos (4(x+(\pi)/(2)))](https://img.qammunity.org/2023/formulas/mathematics/college/ewoal2j3w4inmnu6qmx8lbl96s36m4gm07.png)
So the period of the function is π/2.