Given:
The mass of the block, m=200 g=0.2 kg
The length of the string, L=50 cm=0.5 m
The frequency of rotation of the block, f=75 rpm
To find:
a. Speed of the block.
b. The tension in the string.
Step-by-step explanation:
The angular velocity of the block is,
![\omega=(2\pi f)/(60)](https://img.qammunity.org/2023/formulas/physics/college/8827e900d2oqcksm53wx0e66lil9qngcpa.png)
On substituting the known values,
![\begin{gathered} \omega=(2\pi*75)/(60) \\ =7.85\text{ rad/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/q0d2r4rdvomkgv5burtsba40gt8tzrp2fc.png)
a.
The speed of the block is given by,
![v=\omega r](https://img.qammunity.org/2023/formulas/mathematics/college/xda9zk1nlqb9ce9504xyojikozg9as3j5y.png)
On substituting the known values,
![\begin{gathered} v=7.85*0.50 \\ =3.93\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/2kisfmmtuc9jnex9kf4cfvrvkfsx57qfzh.png)
b.
The tension in the string provides the neccessary centripetal force required for the block to trace the circular path.
Thus the tension in the string is given by,
![T=(mv^2)/(r)](https://img.qammunity.org/2023/formulas/physics/college/3jq0hkvtfjj8dmwfbwei9kl6y8lyck02yv.png)
On substituting the known value,
![\begin{gathered} T=(0.2*3.93^2)/(0.5) \\ =6.18\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/1ebg96yu0h5txchfyw3dbxsfxo2d1vpsta.png)
Final answer:
a. The speed of the block is 3.93 m/s
b. The tension in the string 6.18 N