228k views
24 votes
Match each inequality with the correct solution.

Match each inequality with the correct solution.-example-1

1 Answer

9 votes

Answer:

i. = b

ii = d

iii = a

iv = c

Explanation:

When dividing an inequality with a negative number, remember to flip the inequality symbol:

  • Less than (<) flips to greater than(>).
  • Less than or equal to (≤) flips to greater than or equal to (≥).

..................................................................................................................................................


\sf I.\ \boldsymbol{\sf 4x + 12 < 20}


\sf \implies 4x + 12 - 12 < 20 - 12\ \textsf{[ Subtract \boldsymbol{\sf 12} from both sides. ]}


\sf \implies 4x < 8\ \textsf{[ Divide both sides by \boldsymbol{\sf 4}. ]}


\sf \implies (4x)/(4) < (8)/(4)\ \textsf{[ Simplify. ]}


\sf \implies \boxed{\sf x < 2}

..................................................................................................................................................


\sf II.\ \boldsymbol{\sf 55 < 35 + 10x}


\sf \implies 55 - 35 < 35 - 35 + 10x\ \textsf{[ Subtract \boldsymbol{\sf 35} from both sides. ]}


\sf \implies 20 < 10x\ \textsf{[ Divide both sides by \boldsymbol{\sf 10}. ]}


\sf \implies (20)/(10) < (10x)/(10)\ \textsf{[ Simplify. ]}


\sf \implies 2 < x \implies \boxed{\sf x > 2}

..................................................................................................................................................


\sf III.\ \boldsymbol{\sf -(3)/(2)x + 12 > 15}


\sf \implies -(3)/(2)x + 12 - 12 > 15 - 12\ \textsf{[ Subtract \boldsymbol{\sf 12} from both sides. ]}


\sf \implies -(3)/(2)x > 3\ \textsf{[ Multiply both sides by \boldsymbol{\sf 2}. ]}


\sf \implies 2\left(-(3)/(2)x\right) > 2(3)


\sf \implies -3x > 6\ \textsf{[ Divide both sides by \boldsymbol{\sf -3}. ]}


\sf \implies (-3x)/(-3) > (6)/(-3)\ \textsf{[ Simplify. ]}


\sf \implies \boxed{\sf x < -2}

..................................................................................................................................................


\sf IV.\ \boldsymbol{\sf -8x < 16}


\sf \implies (-8x)/(-8) < (16)/(-8)\ \textsf{[ Divide both sides by \boldsymbol{\sf -8}. ]}


\sf \implies \boxed{\sf x > -2}

..................................................................................................................................................

User Lung
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories