We have 40 minutes to exercise, and we want to burn 300 calories.
The elliptical trainer burns 8 cal/min and the stationary bike burns 6 cal/min.
We can write the total amount of calories burned as:
![8x+6y=300](https://img.qammunity.org/2023/formulas/mathematics/college/uvnkn5vh7ni6qdibpo15xakdy75kiinrc8.png)
x: minutes in the elliptical trainer.
y: minutes in the stationery bike.
We also know that the total amount of minutes is 40, so we can write:
![x+y=40](https://img.qammunity.org/2023/formulas/mathematics/college/j93uzjugko9p6bq84tknqqo4f7rzel0a40.png)
We can write y in function of x, and then solve the first equation:
![x+y=40\longrightarrow y=40-x](https://img.qammunity.org/2023/formulas/mathematics/college/mlmig1n5dsdah5hrw7fu9ro78h7jgkzdcy.png)
![\begin{gathered} 8x+6(40-x)=300 \\ 8x+240-6x=300 \\ 2x=300-240 \\ 2x=60 \\ x=(60)/(2) \\ x=30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ojqpnaybf98h1k5t07kae4n5omg9a29lil.png)
Then, for x=30, the value of y is:
![y=40-x=40-30=10](https://img.qammunity.org/2023/formulas/mathematics/college/u9yfogrhfv7elywcbgfv3rfj65bs9bq7iz.png)
You should spend
30 minutes on the elliptical trainer and
10 minutes on the stationary bike.