163k views
4 votes
I need help with this practice problem It’s from my ACT PREP GUIDE

I need help with this practice problem It’s from my ACT PREP GUIDE-example-1

1 Answer

1 vote

step 1

Find out the value of


\tan (-(2\pi)/(3))

Remember that

2pi/3=2(180)/3=120 degrees

the angle belonging to the third quadrant

the tangent in III quadrant is positive

so

tan(-2pi/3)=tan(180-120)=tan(60)

and


\begin{gathered} \tan (60^o)=\sqrt[]{3} \\ \tan (-(2\pi)/(3))=\sqrt[]{3} \end{gathered}

step 2

Find out the value of


\sin ((7\pi)/(4))

we have that

7pi/4=7*180/4=315 degrees

the angle lies on the IV quadrant

the sine is negative

sin(7pi/4)=sin (315)=-sin (360-315)=-sin(45)


\begin{gathered} \sin (45^o)=\frac{\sqrt[]{2}}{2} \\ \sin \text{ (}(7\pi)/(4))=-\frac{\sqrt[]{2}}{2} \end{gathered}

step 3

Find out the value of


\sec (-\pi)

sec(-pi)=sec(pi)=1/cos(pi)=1/-1=-1

step 4

substitute the given values in the original expression


\frac{\sqrt[]{3}}{\frac{-\sqrt[]{2}}{2}}-(-1)
-\frac{2\sqrt[]{3}}{\sqrt[]{2}}+1=\frac{-2\sqrt[]{3}+\sqrt[]{2}}{\sqrt[]{2}}

simplify


\frac{-2\sqrt[]{3}+\sqrt[]{2}}{\sqrt[]{2}}\cdot\frac{\sqrt[]{2}}{\sqrt[]{2}}=\frac{-2\sqrt[]{6}+2}{2}=-\sqrt[]{6}+1

User Pratik
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories