Let's take the length as x and the width as y.
According to the statement, the width is 6 less than the length, it means the width is x-6. It is also said that the area is 135, it means that the width times the length is 135.
Use this information to find the length and the width.
![y=x-6](https://img.qammunity.org/2023/formulas/mathematics/college/8t21g89f1vg45ck87ua7asa9hvefzhz5ac.png)
![\begin{gathered} A=x\cdot y=135 \\ x\cdot(x-6)=135 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zpp70ysoc2cjcdb5mmpiye6s5cq4l0cwsy.png)
Write the quadratic equation:
![x^2-6x-135=0](https://img.qammunity.org/2023/formulas/mathematics/college/kqs1e13clvecwppyloxifr98dva8zwnutb.png)
Solve for x (use the quadratic formula):
![\begin{gathered} x_{}=(-\left(-6\right)\pm√(\left(-6\right)^2-4\cdot\:1\cdot\left(-135\right)))/(2\cdot\:1) \\ x_{}=(-\left(-6\right)\pm\:24)/(2\cdot\:1) \\ x_{}=(-\left(-6\right)+24)/(2\cdot\:1),\: x_{}=(-\left(-6\right)-24)/(2\cdot\:1) \\ x=15 \\ x=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ur8b9qv7uxo0x7blxcqvuwgtdebuaeeb6v.png)
In this case, we have to use only positive values of x, because the length of a rectangle can not be negative. It means, the length of the rectangle is 15 and the width (which is 6 inches less) is 9.
Length=15 inches
Width=9 inches