Given in the question:
a.) The first costs $5 upfront and $4 per kilometer.
b.) The second costs $15 plus $3 per kilometer.
Let's generate the equation of each of the car service charges,
Let,
y = total cost of service
x = distance traveled
a.) The first costs $5 upfront and $4 per kilometer.
![\text{ y = 5 + 4x}](https://img.qammunity.org/2023/formulas/mathematics/college/rbdnnw83ip9er1oe12eguh3xdmnlnv7b55.png)
b.) The second costs $15 plus $3 per kilometer.
![\text{ y = 15 + 3x}](https://img.qammunity.org/2023/formulas/mathematics/college/5kxw3sywm5zc0macnhm4k30x4zqwi904d6.png)
Let's determine the driving distance when the two companies charge the same.
We get,
![y_{1st\text{ Company}}=y_{2nd\text{ Company}}_{}](https://img.qammunity.org/2023/formulas/mathematics/college/9p3s4y3230hgprar3329e8fnyjvnpopcpl.png)
![\text{ 5 + 4x = 15 + 3x}](https://img.qammunity.org/2023/formulas/mathematics/college/yks3whdg81ak8jovamxaz2xhz6njp6qt0h.png)
![\text{ 4x - 3x = 15 - 5}](https://img.qammunity.org/2023/formulas/mathematics/college/25xg64issa03dxy89ll63vvkuh3p9i7m1o.png)
![\text{ x = 10}](https://img.qammunity.org/2023/formulas/mathematics/college/gjjrtlkndshpeuqekmq0s6rlg5etr2z4et.png)
Therefore, the two companies charge the same at a driving distance of 10 kilometers.
Summary:
1. The system of equations.
y = 5 + 4x
y = 15 + 3x
2. The solution.
x = 10
3. Graphing the system of equations.