The diagram below represents the area approximated using rectangular elements,
The interval width when an interval [a,b] is divided into 'n' rectangles is given by,
![\Delta x=(b-a)/(n)](https://img.qammunity.org/2023/formulas/mathematics/college/gikywuv1o96gy3k49lt5rk33f5de55m234.png)
According to the given problem,
![\begin{gathered} f(x)=x^2+3x \\ a=1 \\ b=5 \\ n=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wwi4gpv5n08u3yq67pff7xaeejjt2a931f.png)
Then the width of each interval will be,
![\begin{gathered} \Delta x=(5-1)/(4) \\ \Delta x=(4)/(4) \\ \Delta x=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e0i35zfdjxifqseorx95ze7mhrp1gn9ybu.png)
The left end-points of the approximating rectangles are,
![1,2,3,4](https://img.qammunity.org/2023/formulas/mathematics/high-school/blj2u0qahgsohr3k2oykcdn19jtzaa4jn8.png)
The value of the function at that left end-point gives the height of that rectangle. So the height of each rectangle will be,
![\begin{gathered} f(1)=(1)^2+3(1)=1+3=4 \\ f(2)=(2)^2+3(2)=4+6=10 \\ f(3)=(3)^2+3(3)=9+9=18 \\ f(4)=(4)^2+3(4)=16+12=28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i5m1ojbzy2kbd8e63qyl1zjl6zd39rpuwc.png)
Then the approximate area (A) under the curve between the limits is given by the sum of the areas of all these 4 approximating rectangles,
![\begin{gathered} A=\mleft\lbrace\Delta x\cdot f(1)\}+\mright?\lbrace\Delta x\cdot f(2)\}+\lbrace\Delta x\cdot f(3)\}+\lbrace\Delta x\cdot f(4)\} \\ A=\Delta x\cdot\mleft\lbrace f(1)+f(2)+f(3)+f(4)\}\mright? \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/alc0fmou09nul4ybvojkvyws7lrjqgtbrj.png)
Substitute the values and simplify,
![\begin{gathered} A=1\cdot(4+10+18+28) \\ A=60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wpzzv673ovvop3a8cxps78r2em8tb2h53f.png)
Thus, the approximate area under the curve between the given limits is 60 square units.